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Determination of Damping Factor at the Vibrations of Composite Bars
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In this paper, it is showed that a mechanical model with one degree of freedom can be used to study the
vibrations of a bar in a certain point. The considered structures were made of epoxy resin reinforced with
carbon and carbon-kevlar texture. The vibrations in the free end of the bar, clamped at the other end, were
determined experimentally for four different lengths. Eigenfrequencies and damping factor for the first modes
of vibration were obtained for each bar. Relationships for the eigenfrequency and damping factor are proposed,
as a function of the length of the bar, for each of the studied materials.
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Classical theories for isotropic plates (Classical
Lamination Theory - CLT) based on Poisson – Kirchhoff
hypotheses, are inadequate for predicting the behaviour of
anisotropic plates [1]. Furthermore, the Reissner – Mindlin
type models (First Shear Deformation Theory – FSDT) can
lead to large errors in the prediction of local response of
moderately thick laminated plates. Discontinuous derivates
in correspondence to each interface, which cannot be
described by the CLT or FSDT analyses, are emphasized in
[2].

A much better description can be obtained by the use of
layer-wise models (LWM). The first attempts to consider
each layer in a sandwich structures as a separate bar were
made in [3, 4].

In [5] was applied the abovementioned assumption to
laminated plates by considering each layer as an individual
Reissner – Mindlin plate. In [6] and [7], each layer is treated
separately using linear in – plane displacements in the
thickness direction Oz. 8.Other researchers [8] treated
each layer separately, by employing a higher – order
displacement field for flexural wave propagation analysis
in laminated plates.

A Reissner mixed variational equation is employed  in
[9] to derive the differential equations, in terms of the
introduced stresses and displacement variables, that give
the dynamic equilibrium and compatibility of each layer. A
numerical investigation has been conducted for free
vibration response of cross – ply laminated, simply
supported, thick and thin plates for which closed - form
solutions are given.

Studies on the damped vibrations of Euler - Bernoulli
and Timoshenko beams were also undertaken, [10, 11].
The material was assumed to be incompressible whereby
the same viscoelastic operators could be used both for the
flexural and shear deformations. This allowed the use of
the normal modes and their orthogonality conditions to
solve this viscoelastic forced vibration problem. A damped
and axially loaded Timoshenko beam for random
transverse load is analyzed in [10]. Only a special case of
damping in the transverse and rotation motion was
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considered, allowing then the use of orthogonality
conditions of the undamped modes to decouple the modal
equations. The “closed – form” solution, but for an
incomplete differential equation of a simply – supported
bar with external damping was obtained [11].

In [12] is presented a general modal approach to solve
the linear vibration problem of a uniform Timoshenko beam
with external transverse and rotation viscous damping and
different viscoelastic damping in the flexural and shear
deformations. With this approach, a beam with given
boundary conditions can be as conveniently analyzed as a
simply supported beam.

The dynamic response of a general class of continuous
linear vibrating systems, which passes damping properties
close to those resulting in classical (uncoupled) normal
modes was analyzed [13]. First, conditions are given for
the existence of classical modes of vibrations in a
continuous linear system, with special attention being paid
to the boundary conditions. Regular perturbation
expansions in terms of undamped mode shapes are utilized
to analyze the eigenproblem as well as the vibration
response of almost classically damped systems. The
analysis is based on a proper splitting of the damping
operators in both the field equations and the boundary
conditions.

Theoretical considerations
Equations of motion for vibration of composite bars are

determined based on the following assumptions:
- on the outside surface, there are no distributed forces

and couples;
- during movement, additional supports or other

connections which involve appearance of shocks do not
appear;

- the initial status of the bar is considered undeformed,
so the bar free of stresses is straight;

- a plane section, normal on the axis of the bar before
deformation, remains plane and normal to the axis of the
bar after deformation (Bernoulli’s hypothesis).
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An important simplification of the equations of motion
is obtained for the bar of constant cross section, with two
axes of geometric symmetry (mass and elastic), made of
orthotropic materials. In this case, the mathematical model
of transversal vibrations of a composite bar is, [14, 15]:

(1)

where:
- W(x,t) is the transversal displacement of the elastic

center of the cross-section;
- θ (x,t) is the rotation of the cross-section;

(2)

- ρ(x,y) is the mass density of the materials;
- E(x,y) is the Young’s modulus of the materials;
- G(x,y) is the shear modulus of the materials;
- p(x,t) is the transversal loading applied on the bar;
- c is the damping coefficient per unit of mass of the

material;
- K is a coefficient that takes into account the non-

uniformity of the shear stresses.
In the case of a thin bar (Euler-Bernoulli), one can

consider that the cross section remains plane and
perpendicular to the neutral axis during deformation. In
this case, the equation for transversal vibrations of the bar
is:

 (3)

The bar vibration is under the form:

(4)

Applying the Laplace transform in equation (4), one
obtains:

        (5)

where (ωn)n∈N  is the set of eigenpulsations, and (μn)n∈N  is
the set of damping factors.

Relationship (5) shows that, in order to study the vibration
in a section of the bar with abscissa x = x0, one may use a
mechanical model with one degree of freedom, whose
equation of motion in Laplace image is, [16]:

(6)

where m is the model mass, and E(s) is the bar
characteristic that depends on:

- the boundary conditions, which depend on the type of
supports;

- the elastic properties of the composite material;
- the damping coefficient;
- the transversal dimensions of the bar section;
- the length of the bar.

The characteristic E(s), which models the bar, is chosen
in such a way in which relationships (5) and (6) coincide
for the section x = x0, in which the vibrations are studied.

For the first mode of vibration, the characteristic E(s)
has the form:

      (7)

whereα is a coefficient that depends on how the mass of
the bar is distributed.

For a clamped bar of length l, if one considers the same
damping for its eigenmodes, then the functions An(x) and
Bn(x) are:

(8)

where the constants Cn depend on the initial deformation
of the bar, μ = c/2 is the damping factor, and

     (9)

is the set of solutions for the equation, [17-18]:

   (10)

In the case of a model with one degree of freedom, the
following equation is obtained for the first eigenfrequency:

   (11)

where:
- h is the thickness of the bar;
- E is the Young’s modulus of the material;
- ρ is the mass density of the material;
- α is a coefficient that depends on how the mass of the

bar is distributed.

Experimental part
Three sets of test samples made of composite materials,

based on epoxy resin were manufactured. For the first two
sets, carbon-kevlar texture reinforcement was considered,
the difference between them being given by the direction
of application (fig. 1 and  2). The third set of samples has
carbon texture reinforcement (fig. 3).

Fig. 1.
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The test-samples were loaded in traction. For each set
of samples, three with the highest tensile strength were
selected. In table 1, the obtained mechanical properties,
as the average of the results obtained for the three samples,
are listed.

Free-vibrations for a beam made of each set of materials
were studied in order to determine the damping factor.
The experimental set-up consists of a Spider 8 data
acquisition system and  NEXUS 2692-A-0I4 signal
conditioners (fig. 4).

The beams were clamped on a massive table using a
vise. The free length of each beam was: 95, 125, 155 and
185 mm. An accelerometer B&K 8309 was glued with
wax on the longitudinal axis at the free end of the beam.
For each condition of mounting, type of beam and free
length, an initial deformation was imposed. When the
beam was released, free damped vibrations occurred,
which were recorded for about five seconds with a
sampling frequency of 2400 Hz/ channel.

A “pass up” filtration with a lower frequency of 3 Hz
was made, in order to eliminate a possible off-set
introduced by the equipment. the method of logarithmic
decrement was used to determine the damping of the
system. Using cursors, two local maximum values X2 and
X1 in the interval of time Dt were obtained. The damping
factor was calculated with the relationship:

(12)

Then, the damping curve f(t) = Xo . exp(-μ . t) was
plotted and superimposed on the recorded characteristics,
which overlaps on the recorded characteristics. Here, X0

Fig. 2.

Fig. 3.

Fig. 4 Experimental set-up for determination of damped free
vibrations

Fig. 5. Damped free vibrations for beam 1 Fig. 6 Determination of damping factor  for beam 1

Table 1
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Fig. 7 Spectral analysis for damped free vibration for beam 1

  Fig. 8 Frequency of damped free vibrations,  beam 1

Fig. 9 Damping factor, beam 1
                  Fig. 13 Damping factor, beam 3

        Fig. 10. Frequency of damped free vibrations, beam 2

Fig. 11 Damping factor, beam 2

 Fig. 12 Frequency of damped free vibrations, beam 3

represents the initial amplitude of the damped free
vibration. Since damping for the plates in damped free
vibration is a combination of structural damping and
damping due to friction with air, in all recordings for
determining the damping factor μ, the areas in which the
damping is between X1 = 0.2 m/s2 and  X2 = 0.05 m/s2

were selected.
A spectral analysis, using the Finite Fourier Transform

(FFT) techniques was undertaken and the frequency of
damped free vibrations was obtained.

The record of the damped free vibrations for beam 1,
with a free length of 185 mm is presented in  figure 5,
while in figure 6 the exponential curve used to determine
the damping factor is plotted.

In figure 7 is shown a frequency spectrum, typical for
beam 1 (one should underline that  all records and spectra
have similar characteristics).

Table 2
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Forced vibrations with different initial amplitudes were
induced for each plate, in order to observe the possible
changes of the frequencies of vibration and damping. The
frequency of vibration is practically independent of the
amplitude of vibration, but damping depends on the
instantaneous amplitude due to the friction with air. This is
the reason for which the determination of the damping
factor was made for vibrations having an amplitude
between X1 = 0.2 m/s2 and X1 = 0.05 m/s2.

In figures 8 … 13 the graphs for damping factor and
frequency of damped free vibrations as a function of the
free length of the beams are plotted.

Conclusions
The obtained plots show that the variation of frequency

with the length of the beam has the form:

(13)

Theoretically, according to relationship (11), the
exponent λ1 should be 1.5.

Since the graphs for the damping factor have similar
shapes with those for frequency, the following relationship
for the damping factor is proposed by the authors:

(14)

Since the damping factor is a material property, is should
be determined experimentally. In table 2, the values of
coefficients and exponents from relations (13) and (14)
for the three studied materials are listed.

The values of the exponent λ1 are very close to the
theoretical one, showing that model with one degree of
freedom can be successfully used to study the vibrations
of a beam in a point. One can conclude that the natural
frequency, for the first-mode of vibration, has the following
features:

-increases proportionally with the thickness of the beam;
- increases with the Young’s modulus;
-decreases when the specific mass increases.
Because the variations of the damping factor and of the

frequency with the length of the beam are similar, one can
draw similar conclusions for the variation of the damping
factor.

Although relation (11) provides theoretical values of
eigenfrequency very close to those obtained
experimentally, the damping coefficient, as a characteristic
of material can be determined only experimentally.

The decrease of the damping factor with the length of
the beam can be explained by the fact that energy is
dissipated in a bigger quantity of material.
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